3D Universal Optical Microscopes
Profilometer Series

Surface Roughness, Step Height, 3D Topography
Cracks, Defects, Slope Measurement,
Film Thickness, Sub Surface Feature
Impressive and Quick 3D Surface Profilometer

5 Imaging Modes in 1 Microscope
Interferometry, Confocal, Dark Field, Bright Field, Variable Focus
The UP Series provides non-contact surface measurements from nano to micro and combines five imaging modes in one head to characterize all types of surfaces. One click causes the profilometer to switch between the different imaging modes automatically.

Fast Scanning Speed
High pixel colored images
The profiler comes with the latest generation cameras that allow scanning the surface with high speed. Our camera speed enables coverage of large areas and rapid stitching.

Fully Automatic
Automatic reporting, no need to be an expert
The sample surface is scanned with one click of a button, and an automatic test report in standard format is created with ease.

User-Friendly Platform
A cost-effective solution for your industry
The unique platform design comes with high-resolution encoders and open platform architecture. In addition, the cross roller XY stage allows for high precision measurements.
Precise surface analysis in industry and research is essential to ensure optimal performance of materials and components.

Transparent Materials
- Glasses
- Wafers
- Contact lenses
- Optics elements

Smooth and Rough Coatings
- Hard coatings
- Roughness
- Scratch analysis
- Porosity

Dark and Shiny Surfaces
- Mirror surface
- 3D waviness
- Step height
- Crack analysis

2D Materials
- Film Thickness
- Grain size
- Defects
- Microstructure

Flat and Non-flat Surfaces
- Tooling
- Additive manufacturing
- Topography
- Volumes
Bright. Dark. 3D
Universal Profilometer Unlike Any Other

Bright Field
High speed and resolution

Dark Field
Magnifies cracks and defects
5 Imaging Modes in 1 Microscope

3D Optical Surface Metrology

1. **White Light Interferometer (WLI)**
 Highest Z resolution. A big plus for flat, nm height measurements.

2. **Confocal Microscopy Mode**
 Highest lateral resolution. A big plus for transparent, translucent, steep slopes, multi-layer or rough samples.

3. **Bright Field Mode**
 Colored 2D images at high speed.

4. **Dark Field Mode**
 Highest contrast imaging. Detects cracks, defects, and failures with high resolutions not possible with any optical technique.

5. **Focus Variation**
 Measures the shape and creates unifocus images of large areas at rapid speed.
Automatic Image Stitching

The UP Series acquires a real color image without any sample movement.

Automatic image stitching is included in our software package, ensuring the acquisition of bigger images.

This mode offers the automated imaging of large surfaces at high magnifications.

Available in
All 5 Modes
3D Microscope For Multiple Applications

The Most Powerful Package of Analysis On The Market

- Coin
- Vickers Hardness
- Ink on paper
- Z calibration sample
- Wafer bumps
- Micro fluid chip
- Via and Features on Wafer
- Turning surface
Nipkow Confocal Microscopy (Lambda Head) represents the best confocal technique. Rather than a single pinhole, the Lambda head has a thousand pinholes arranged on an opaque disk. These several simultaneously present pinholes that scan the sample and allow high-speed 3D image creation with nm resolution.

Our Lambda Confocal head offers the best in speed and resolution than any other confocal techniques such as point confocal to scan surface using XY stage or scanning XY mirrors to move the pinhole or using the pseudo digital confocal method.

Key Features:

- Our Confocal technique uses the highest NA objectives and optically produces the highest lateral resolution.
- Confocal microscopy can retrieve data from steep slopes, 72° vs. 44°, from interferometry.
- No limitation on surface roughness and surface reflectivity
- Colored images
- Find features on tough samples or transparent samples very easily.
Interferometry

Highest Z Resolution In Non-Contact Profilometry

White light interferometry (WLI) is an optical surface topography measurement technique that uses scanning interferometry to generate 2D and 3D models of surface height.

Light reflects from the reference mirror, and the sample is recombined at the beam splitter to create interferograms.

Key Features:

• One of the fastest cameras (250 FPS+) used for WLI in the market
• Highest Z resolution, sub-nanometer
• Z resolution independent of magnification
• User-selectable four-color LED light source (white, red-630nm, green-530nm, and blue-460nm) improves lateral resolution and optical coherence length (blue light provides higher lateral resolution)
XY Stage

Tilt table

UP module

150-mm Z-axis with advanced encoder

Optional coating thickness by spectral reflectance

Optional AFM

UP-5000
Platforms

Profilometer Series

<table>
<thead>
<tr>
<th>Feature</th>
<th>UP-5000</th>
<th>UP-3000</th>
<th>UP-2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bright and Dark Field</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Spinning Disk Confocal</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>White Light Interferometry</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Variable Focus Imaging</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>3D Image Stitching</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Spectral Reflectance Profilometry</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFM</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raman Microscope</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XYZ Stage*</td>
<td>300 x 300 x 150 mm</td>
<td>150 x 200 x 150 mm</td>
<td>150 x 200 x 150 mm</td>
</tr>
</tbody>
</table>

* more custom options are available
3D Profilometry for Inspection of Surfaces

Colored Images

Measuring the 3D surface topography has become increasingly important in industrial automation, particularly in in-situ product inspection.

Our 3D optical profilers provide many benefits over other measurement methods used for non-contact inspection. These benefits range from rapid measurement speeds and custom analysis to completely automated measurements and non-destructive inspection.
Software

A complete software package is provided with all UP Series instruments.

Imaging analysis
• Roughness
• 3D imaging
• Volume of wear or holes
• Step height
• Additional Features
Analysis Package and International Standards

The UP modules series come with several test-specific standards for data traceability and quick platform checkup. The instruments also come with standard test recipes to ensure normalized testing.

- Real time imaging of 3D surface topography.
- Overlay color and intensity images on 3D topography.
- Data acquisition artifact processing - outliers, local defects.
- Roughness and surface texture - with the latest ISO and national standards.
- Extraction and analysis regions of interest (Page viewer for fast navigation.)
- Modules for advanced surface texture analysis, contour analysis, grains, and particles analysis, 3D Fourier analysis, image co-localization, statistics, and more.
- Fast, automated, traceable surface analysis report creation
- Pass/fail criteria with green/red traffic lights can be specified for any parameter.
- Series of measurements can be analyzed automatically using templates and mini-docs (common sequences of analysis steps).
- Comprehensive data export: PDF, RTF, screen and print quality bitmaps, Excel compatible numerical results for compatibility with quality management and other systems.
- Integrates with Mountains Map software.

The UP instruments comply with many different testing standards ISO 25178, EUR15178, ISO 16610, and ISO 4287.
Specifications

Interferometry Objectives

<table>
<thead>
<tr>
<th></th>
<th>2.5X</th>
<th>5X</th>
<th>10X</th>
<th>20X</th>
<th>50X</th>
<th>100X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerical Aperture (NA)</td>
<td>0.075</td>
<td>0.13</td>
<td>0.3</td>
<td>0.4</td>
<td>0.55</td>
<td>0.7</td>
</tr>
<tr>
<td>Working Distance (mm)</td>
<td>10.3</td>
<td>9.3</td>
<td>7.4</td>
<td>4.7</td>
<td>3.4</td>
<td>2.0</td>
</tr>
<tr>
<td>FOV (um)</td>
<td>6910 x 5180</td>
<td>3460 x 2590</td>
<td>1730 x 1300</td>
<td>860 x 650</td>
<td>350 x 260</td>
<td>170 x 130</td>
</tr>
<tr>
<td>Optical Resolution (L&S 460 nm) (um)</td>
<td>1.87</td>
<td>1.08</td>
<td>0.47</td>
<td>0.35</td>
<td>0.26</td>
<td>0.20</td>
</tr>
<tr>
<td>Vertical Resolution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Better than 0.01nm</td>
<td></td>
</tr>
<tr>
<td>Vertical RMS repeatability RMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.01nm</td>
<td></td>
</tr>
</tbody>
</table>

Confocal, Bright Field, and Dark Field Objectives

<table>
<thead>
<tr>
<th></th>
<th>5X</th>
<th>10X</th>
<th>20X</th>
<th>50X</th>
<th>100X</th>
<th>150X</th>
<th>20X</th>
<th>50X</th>
<th>100X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerical Aperture (NA)</td>
<td>0.15</td>
<td>0.3</td>
<td>0.45</td>
<td>0.8</td>
<td>0.9</td>
<td>0.95</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
</tr>
<tr>
<td>Working Distance (mm)</td>
<td>23.5</td>
<td>17.5</td>
<td>4.5</td>
<td>1.0</td>
<td>1.0</td>
<td>0.3</td>
<td>19</td>
<td>11</td>
<td>4.5</td>
</tr>
<tr>
<td>Field of view (um)</td>
<td>3460 x 2590</td>
<td>1730 x 1300</td>
<td>860 x 650</td>
<td>350 x 260</td>
<td>170 x 130</td>
<td>120 x 90</td>
<td>860 x 650</td>
<td>350 x 260</td>
<td>170 x 130</td>
</tr>
<tr>
<td>Optical Resolution (L&S 460nm)(um)</td>
<td>0.94</td>
<td>0.47</td>
<td>0.31</td>
<td>0.18</td>
<td>0.16</td>
<td>0.15</td>
<td>0.35</td>
<td>0.23</td>
<td>0.18</td>
</tr>
<tr>
<td>Vertical Resolution (nm)</td>
<td>72.0</td>
<td>18.0</td>
<td>8.0</td>
<td>2.5</td>
<td>2.0</td>
<td>1.8</td>
<td>10.1</td>
<td>4.5</td>
<td>2.5</td>
</tr>
</tbody>
</table>